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ABSTRACT

Latent class (LC) analysis is a model-based clustering approach for categorical data,

with a wide range of applications in the social sciences and beyond. When the data

have a hierarchical structure, the multilevel LC model can be used to account for

higher-level dependencies between the units by means of a further categorical LC

variable at the group level. The research interest of LC analysis typically lies in the

relationship between the LCs and external covariates, or predictors. To estimate LC

models with covariates, researchers can use the one-step approach, or the generally

recommended stepwise estimators, which separate the estimation of the clustering

model from the subsequent estimation of the regression model. The package mul-

tilevLCA has the most comprehensive set of model specifications and estimation

approaches for this family of models in the open-source domain, estimating single-

and multilevel LC models, with and without covariates, using the one-step and step-

wise approaches.
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1. Introduction

Latent class (LC) analysis (Goodman, 1974a; Lazarsfeld & Henry, 1968; McCutcheon,

1979) is used to classify units into discrete types based on a set of observed cate-

gorical variables. The clustering is modeled as an underlying discrete variable with

some number of categories or latent classes. LC analysis has been applied in diverse

research domains in the social sciences and beyond. For example, in political research,

Oser (2022) identified repertoires of political participation; in educational research,

Hickendorff, van Putten, Verhelst, and Heiser (2010) identified patterns of mental

strategies for division problems among elementary school students; in substance use

research, Bray, Watson, Salisbury-Afshar, Taylor, and McGuire (2023) identified types

of opioid users among patients in the emergency department.

A basic assumption of standard LC analysis is that the units of analysis are in-

dependent of each other. This conditional independence assumption is often violated

when the data have a multilevel, or hierarchical structure, for example when we ob-

serve voters within countries, students within schools, or patients within hospitals. In

hierarchical data, units within groups are likely to be systematically more similar than

units across groups.

To account for the higher-level dependencies in the hierarchical data, the baseline

LC model can be extended by modeling a second categorical LC variable at the higher

(group) level. In such a multilevel LC model, the distribution of the lower-level classes

is allowed to vary between the higher-level classes. This random effect is effectively

nonparametric (Aitkin, 1999; Finch & French, 2014; Laird, 1978; Vermunt, 2003), thus

avoiding strict distributional assumptions. For instance, in their multilevel LC analysis

of financial product ownership across European countries, Bijmolt, Paas, and Vermunt

(2004) identified 14 individual-level consumer segments and found that the prevalence

of these segments varied between 7 country-level clusters. For example, the consumer

segment that was the largest in the cluster of countries in North-Central Europe was

rather small in the cluster of countries in North-Western Europe.

In LC analysis, identifying the clustering structure of the data is usually only

the first step of the empirical investigation. The research interest usually lies in the
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relationship between the classes and some covariates, or predictors. In the multilevel

LC model, covariates can be included both on the lower level and on the higher level.

For instance, in their multilevel LC analysis of adolescent smoking behavior across

communities, Henry and Muthén (2010) first identified three individual-level clusters -

heavy smokers, moderate smokers, and nonsmokers, and two community-level clusters

- low-use communities and high-use communities. Subsequently, they analyzed the

regression relationship between smoking behavior and lower-level covariates such as

school performance and academic aspirations, and the regression relationship between

community type and higher-level covariates such as the proportion of youth living in

poverty.

Historically, multilevel LC models were estimated using the traditional one-step

approach, which involves fitting the full model simultaneously (Lazarsfeld & Henry,

1968; Vermunt, 2003). While the one-step approach has attractive statistical propop-

erties - when the LC model is correctly specified, it is efficient and asymptotically

unbiased - it also comes with serious defects (see e.g. the discussion in Bakk & Kuha,

2018). Whenever covariates are added or removed, the whole model needs to be refitted

and the effective definitions of the latent classes can change. This complicates model

interpretation and model selection. Furthermore, the one-step approach does not fit

with the logic of most applied researchers, who tend to view the regression model as a

distinct component that should be estimated only after the clustering model has been

built. Therefore, the general recommendation is to use stepwise estimation approaches

(Asparouhov & Muthén, 2014). These were traditionally only available in single-level

LC analysis, but recent methodological advancements have shown how they can be

extended to multilevel LC models (Bakk, Di Mari, Oser, & Kuha, 2022; Di Mari, Bakk,

Oser, & Kuha, 2023b; Lyrvall, Bakk, Oser, & Di Mari, 2024).

Stepwise approaches avoid the defects of the one-step approach by separating the

estimation of the measurement model from the subsequent estimation of the structural

model. Among the available stepwise approaches, the two-step approach is known to be

the most efficient, least biased, most direct, and most flexible option (Bakk & Kuha,

2018; Di Mari et al., 2023b). The two-stage approach (Bakk et al., 2022) is slightly

less direct but otherwise largely shares the same properties as the two-step approach.

3



Compared to the one-step approach, the two-step and two-stage approaches come

with enhanced algorithmic stability and improved speed of convergence (Di Mari et

al., 2023b). Regardless of which estimation approach is applied, the number of classes

on the higher level and the lower level is taken as given. Because the complexity of the

underlying clustering structure in the data tends to be unknown a priori, identification

of the optimal number of classes is typically the first step of applied LC analysis.

In light of these recent methodological contributions, the first aim of this article

is to provide a compilation of state-of-the-art methods for multilevel LC analysis with

covariates. We describe benchmark model specifications and estimation approaches.

In addition, we detail initialization issues and model selection alternatives. Targeting

both beginning LC analysts and more advanced LC analysts, we hope to strike a

satisfying balance between user-friendly ground-up exposition and technical detail.

A lack of general and easily available software solutions has limited the dissemi-

nation of these estimation and model selection approaches in the applied multilevel LC

analysis literature. The recently published R package multilevLCA (Di Mari & Lyrvall,

2024) was developed to fill this gap. The package is available from the Comprehen-

sive R Archive Network at http://cran.r-project.org/package=multilevLCA. The

second aim of this article is to propose the multilevLCA package to the open-source

statistical software literature. While the functionalities discussed in this paper can be

implemented in specialized software like Latent GOLD (Vermunt & Magidson, 2021)

and Mplus (Muthén & Muthén, 2017), these software options are commercial and offer

fewer automatic implementations of stepwise and sequential routines. In this paper we

focus on open-source software. We present the capabilities and syntax of multilevLCA.

The presentation is organized in the article alongside the corresponding LC analysis

methodological exposition, to closely connect software implementation with theory.

The software contribution has been written in such a way that we hope that this

article can serve as a stand-alone reference for application of multilevLCA.

The multilevLCA package is both the first freeware-software to implement step-

wise estimation of multilevel LC models with covariates and the first to estimate mul-

tilevel LC models with both dichotomous and polytomous indicators. multilevLCA

has the most comprehensive set of model specifications and estimation approaches;
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estimating single- and multilevel LC models, with and without covariates, using the

one-step, two-stage, and two-step approaches. The semi-automatic implementation of

model selection in the package is more straightforward and efficient compared to when

each model of interest needs to be fitted separately, which is the case when using other

freeware-software for LC analysis.

The only existing freeware-software for multilevel LC analysis with covariates

is the R package glca (Kim, Jeon, Chang, & Chung, 2022), but it is limited to the

one-step approach, with no implementation of stepwise approaches. Moreover, it does

not have the capacity to model polytomous indicators, which are typically used in

applied research. As such, the scope of the use of glca is somewhat limited compared

to multilevLCA. The comprehensive functionalities of multilevLCA also extend the

freeware-software state-of-the-art in single-level LC analysis with covariates. Existing

packages for it include the R packages poLCA (Linzer & Lewis, 2011) and MultiLCIRT

(Bartolucci, Bacci, & Gnaldi, 2014), but they estimate only single-level models us-

ing the one-step approach. The more complete alternative for single-level LC model-

ing is the Python package StepMix (Morin et al., 2023), with R interface stepmixr

(Lacourse et al., 2024), which also implements stepwise estimation. However, unlike

multilevLCA, StepMix does not compute maximum-likelihood standard errors of the

regression parameters for the covariates, which is the statistical benchmark, instead

applying the bootstrap method.

This article offers a comprehensive review of the key aspects of multilevel LC

analysis with covariates, and a hands-on guide to the implementation of these tech-

niques using the multilevLCA package. In the next section, we present the multilevel

LC model and the multilevLCA syntax. Then, we describe possible estimation strate-

gies for the model and their implementation in multilevLCA, including strategies for

class selection and initialization and a benchmark simulation study of performance

and estimation times. Next, we illustrate key features of multilevLCA by means of an

empirical example, and conclude with a summary.
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2. Model specifications

2.1. Theoretical framework

Let Yih denote the response of unit i = 1, . . . , N on the categorical item h = 1, . . . ,H,

with possible values Yih = 1, . . . , Rh, and let Yi = (Yi1, . . . , YiH)′ denote the full

response vector for the same unit. The elements of the vector are treated as observed

indicators of the categorical latent variable Xi, with possible values {1, . . . , T}. The

single-level latent class (LC) model defines the unconditional probability of observing

a particular response pattern Yi as a mixture of T class-specific probabilities, that is,

P (Yi) =

T∑
t=1

P (Xi = t)P (Yi|Xi = t). (1)

Here, the mixture weight P (Xi = t) describes the unconditional probability that

unit i belongs to class t, while the mixture component P (Yi|Xi = t) describes the

conditional probability of a particular response pattern Yi given class t. The responses

of the different indicators are assumed to be conditionally independent given class

membership (the local independence assumption), leading to

P (Yi) =

T∑
t=1

P (Xi = t)

H∏
h=1

P (Yih|Xi = t) =

T∑
t=1

P (Xi = t)

H∏
h=1

Rh∏
r=1

ϕ
I(Yih=r)
rh|t , (2)

where the quantity ϕrh|t is the probability of giving response r on item h given

class t, and I(Yih = r) is equal to 1 if unit i gives response r on item h, and 0

otherwise. For ease of notation, we will use P (Yih|Xi = t) to denote
∏Rh

r=1 ϕ
I(Yih=r)
rh|t in

what follows.

Figure 1 graphically illustrates the single-level LC model defined in (2). The ar-

rows describe a causal relationship from the LC variableXi to the indicators Yih. There

are no arrows between the indicators, reflecting the local independence assumption.

In a multilevel LC model we take the lower-level units i = 1, . . . , nj (e.g. in-

dividual respondents) to be nested within higher-level units j = 1, . . . , J (groups,

e.g. countries). Let Wj be a higher-level categorical latent variable with possible

categories m = 1, . . . ,M , and probabilities P (Wj = m) = ωm > 0, and let

Xij now be a lower-level categorical latent variable that is defined conditional on
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the values of Wj , with possible values t = 1, . . . , T and conditional probabilities

P (Xij = t|Wj = m) = πt|m > 0. We collect all ωm and πt|m respectively in the

M -vector ω, and the M × T matrix Π. The multilevel (random-effect) LC model for

Yij can be specified as

P (Yi) =

M∑
m=1

P (Wj = m)

T∑
t=1

P (Xij = t|Wj = m)

H∏
h=1

P (Yijh|Xij = t), (3)

where we assume that the conditional response probabilities of items Yijh depend

on higher-level class membership only throughXij . The model specified in (3) is similar

to the multilevel item response model (Gnaldi, Bacci, & Bartolucci, 2016), but with

categorical latent variables on both levels.

While the assumption of conditional independence between Yijh andWj givenXij

is not necessary for model identification, it is a standard assumption in multilevel LC

analysis for enhancing model interpretation (Lukočienė, Varriale, & Vermunt, 2010;

Vermunt, 2003). The higher-level LC variable is typically included when it cannot be

assumed that the distribution of the lower-level LCs be invariant across higher-level

units j (this point is exemplified in a substantive analysis in Section 5).

In Figure 2, we graphically illustrate the multilevel LC model defined in (3). The

absence of arrows from the higher-level LC variable Wj to the indicators Yih reflect

their conditional independence given the lower-level LC variable Xij .

Higher-level and lower-level covariates can be included to predict class member-

ship. Let Zij = (1,Z′
1j ,Z

′
2ij)

′ be a vector of K covariates, which can be defined on

the higher level (Z′
1j) and the lower level (Z′

2ij). On the higher level, we consider the

following multinomial logistic model

P (Wj = m|ZH
j ) =

exp(α′
mZH

j )

1 +
∑M

l=2 exp(α
′
lZ

H
j )

, (4)

where ZH
j = (1,Z′

1j)
′, and αm are regression coefficients for m = 2, . . . ,M . When

only the intercept term is included, then αm is equal to the log-odds log(ωm/ω1).

On the lower level, class membership probabilities can be parameterized in the

following analogous way,

P (Xij = t|Wj = m,Zij) =
exp(γ′

tmZij)

1 +
∑T

s=2 exp(γ
′
smZij)

, (5)
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where γtm is a vector of regression coefficients for each t = 2, . . . , T , and m =

1, . . . ,M . When only the intercept term is included, so that Zij = 1, then γtm is equal

to the log-odds log(πt|m/π1|m). As can be seen, this parametrization allows the effects

of Zij on Xij to vary across different m. The methodological exposition throughout

this article holds also for the equivalent constrained parametrization in which the

slopes are held fixed across different m and only the intercepts are allowed to vary

(Di Mari et al., 2023b; Vermunt, 2005). For generality of exposition, we focus on the

unconstrained parametrization without fixed slopes in (5).

We further assume that the indicators Yijh are conditionally independent from the

covariates given lower-level class membership. With these assumptions, the multilevel

LC model for P (Yij |Zij) can be written as

P (Yij |Zij) =

M∑
m=1

P (Wj = m|ZH
j )

[
T∑

t=1

P (Xij = t|Wj = m,Zij)

H∏
h=1

P (Yijh|Xij = t)

]
. (6)

The conditional response probabilities P (Yijh|Xij = t) define the LC measure-

ment model, while the conditional class membership probabilities P (Wj = m|ZH
j ) and

P (Xij = t|Wj = m,Zij) define the LC structural models.

The multilevel LC model with covariates defined in (6) is graphically illustrated

by means of a path diagram in Figure 3. The assumption of conditional indepen-

dence between the indicators and the covariates given lower-level class membership is

reflected in the absence of arrows from Zij and ZH
j to the Yijh.

As noted above, multilevel LCA is typically applied when the distribution of the

lower-level LCs Xij cannot be assumed to be invariant across higher-level units j. The

strategy of capturing this invariance by means of a higher-level clustering structure is

known as the random-effect approach. This is the approach on which we focus. For

completeness, we now briefly describe the alternative fixed-effect approach. In this

approach the distribution of Xij is allowed to vary across each of the J higher-level

units. This is achieved by treating higher-level unit membership as a (categorical)

covariate in a single-level LC model. Let IHi = (Ii(1), . . . , Ii(J))
′ be a collection of

vectors Ii(j) which are equal to unity if i belongs to j and zero otherwise. A fixed-

effect multilevel LC model with covariates can be specified as
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P (Yi|Zij) =

T∑
t=1

P (Xi = t|IHi ,Zij)

H∏
h=1

P (Yijh|Xij = t), (7)

where, like in the random-effect specification, P (Xi = t|IHi ,Zij) can be parame-

terized by means of multinomial logistic equations.

2.2. Implementation in multilevLCA

The syntax used in the R package multilevLCA is aligned with the notation used in (6).

The package’s multilevel modeling focuses on standard specifications with conditional

independence between the items Yijh and the higher-level LC variable Wj are given the

lower-level LC variable Xij . LC models are specified using the function multiLCA(),

based on some combination of statements about the variables to be included in the

model. This is structured by means of the following arguments:

• data: Matrix or data frame containing the observed data

• Y: Names of data columns with indicators

• iT: Number of lower-level classes

• id high: Name of data column with higher-level id

• iM: Number of higher-level classes

• Z: Names of data columns with covariates in the model for the lower-level classes

• Zh: Names of data columns with covariates in the model for the higher-level

classes

The multilevel LC model with covariates on the higher level and the lower level

includes all the variables corresponding to these statements - the indicatorsY, specified

by Y; the lower-level LC variable X = 1, . . . , T , specified by iT; the higher-level LC

variable W = 1, . . . ,M , specified by id high and iM; the covariates in the model

for the lower-level classes Z, specified by Z; and the covariates in the model for the

higher-level classes ZH , specified by Zh. The syntax for specifying this model is1

1multilevLCA also estimates multilevel LC models in which the slopes for the lower-level structural model are
held fixed across the higher-level classes. This constraint is managed by means of the argument fixedslopes

in the multiLCA() function. The specification fixedslopes = TRUE fixes the slopes in the lower-level structural

model. The default specification fixedslopes = FALSE estimates models without these constraints, which is
the focus of this article.
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multiLCA(data, Y, iT, id_high, iM, Z, Zh)

Single-level LC models with covariates and multilevel fixed-effect LC models can

be estimated by omitting to specify id high, iM, and Zh (which default to NULL). More

specifically, multilevel fixed-effect LC models can be estimated by specifying Z as the

column name which in random-effect modeling is specified for id high. We illustrate

the multiLCA() syntax in greater detail by means of real-data examples in Section 5.

The next section describes the currently existing approaches for estimating (6).

3. Methodology

3.1. Theoretical framework

Let Yj = (Y1j , . . . ,Ynjj)
′ denote the full set of item responses for all lower-level units

belonging to higher-level unit j2. Let θ = (θ′1, θ
′
2)

′ denote the full set of model param-

eters in (6), where θ′1 contains the measurement parameters ϕrh|t, and θ′2 contains the

structural parameters αm and γtm.

Figure 4 graphically illustrates the measurement parameters θ′1 by red arrows,

and the structural parameters θ′2 by blue arrows.

Maximum-likelihood estimates θ̃ can be obtained by maximizing the observed-

data log-likelihood function

ℓ(θ) =

J∑
j=1

log

[
M∑

m=1

P (Wj = m|ZH
j )

nj∏
i=1

T∑
t=1

P (Xij = t|Wj = m,Zij)

H∏
h=1

P (Yijh|Xij = t)

]
.

(8)

This is the classical one-step approach (Lazarsfeld & Henry, 1968; Vermunt,

2003). It is efficient and asymptotically unbiased when the LC model is correctly

2By default, multilevLCA discards any rows with missing values on the items, or incomplete item-response

patterns, before estimation. An alternative strategy involves including incomplete item-response patterns by

means of full-information maximum-likelihood (FIML) estimation, only discarding any rows with missing values
on all the items. The choice between these strategies is managed by means of the argument incomplete

in the function multiLCA(). The default specification incomplete = FALSE implements row-wise deletion of
incomplete item-response patterns. The alternative specification incomplete = TRUE implements the FIML
strategy, including incomplete item-response patterns (except fully missing item-response patterns). Regardless

of strategy for handling missing values, if covariates are included in the model, rows with missing values in the

covariates are removed only in the estimation of the structural part of the LC model, i.e. (see below) step 2 in
the two-step estimator, stage 2 in the two-stage estimator, or the single step in the one-step estimator.
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specified. However, simultaneous estimation of the measurement model and structural

models has serious disadvantages when the correct specification is not known a priori

(see e.g. the discussion in Bakk & Kuha, 2018). Whenever the structural model is

changed - for example adding or removing covariates - the measurement model will

be affected, which distorts the class definitions. In practice, this problem can occur

to an extent that makes comparisons of estimated models meaningless. As such, the

one-step approach complicates model interpretation and model selection. Moreover,

simultaneous estimation of complex models involves demanding computations, which

renders the one-step approach the more time consuming modeling option for multilevel

LC analysis with covariates (Di Mari et al., 2023b).

Stepwise methods overcome the drawbacks of the one-step approach by separating

the estimation of the measurement model and structural model. The first stepwise

method that was proposed in multilevel LC modeling with covariates is the two-stage

approach (Bakk et al., 2022; Di Mari, Bakk, Oser, & Kuha, 2023a). Its first stage

involves estimating the measurement parameters. This is further broken down into

three sub-steps. In the first sub-step, the single-level LC model without covariates

is estimated, ignoring the hierarchical structure of the data, by maximizing the log-

likelihood function

ℓstage1.1(θ1) =

N∑
i=1

log

[
T∑

t=1

P (Xij = t)

H∏
h=1

P (Yijh|Xij = t)

]
, (9)

where N =
∑H

j=1 nj , to obtain measurement estimates θ̃1. In the second sub-step,

the multilevel LC model without covariates is estimated, keeping the measurement

parameters θ1 fixed at their values from sub-step 1, by maximizing the log-likelihood

function

ℓstage1.2(θ2|θ1 = θ̃1) =

J∑
j=1

log

[
M∑

m=1

P (Wj = m)

nj∏
i=1

T∑
t=1

P (Xij = t|Wj = m)

H∏
h=1

P (Yijh|Xij = t, θ1 = θ̃1)

]
,

(10)

where the structural parameters θ2 now contain only the intercept terms, to

obtain structural estimates θ̃2. In the third sub-step, to stabilize the measurement
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estimates, the multilevel LC model is estimated again, this time keeping the structural

parameters θ2 fixed at their values from sub-step 2, by maximizing the log-likelihood

function

ℓstage1.3(θ1|θ2 = θ̃2) =

J∑
j=1

log

[
M∑

m=1

P (Wj = m|θ2 = θ̃2)

nj∏
i=1

T∑
t=1

P (Xij = t|Wj = m, θ2 = θ̃2)

H∏
h=1

P (Yijh|Xij = t)

]
.

(11)

Stage 2 of the two-stage approach involves adding the covariates to the multilevel

LC model, and estimating the intercept and slope terms θ2, keeping the measurement

parameters fixed at their stage-1 values, by maximizing the log-likelihood function

ℓstage2(θ2|θ1 = θ̃1) =

J∑
j=1

log

[
M∑

m=1

P (Wj = m|ZH
j )

nj∏
i=1

T∑
t=1

P (Xij = t|Wj = m,Zij)

H∏
h=1

P (Yijh|Xij = t, θ1 = θ̃1)

]
.

(12)

The two-stage approach simplifies model interpretation and improves computa-

tion time compared to the one-step method, while demonstrating very similar proper-

ties when the model assumptions hold (Bakk et al., 2022). However, a difficulty of this

approach is estimating asymptotic standard errors of the structural parameters. In

the second stage, conditioning on the measurement parameters as if they were known,

rather than estimated with sampling error, yields underestimation of the standard

errors. Conditioning on this first-stage variability is complicated due to the multiple

sub-steps of the first stage.

To address this difficulty, the more straightforward two-step approach (Di Mari

et al., 2023b) was developed. It simplifies the estimation of the measurement model

by means of a single first step. This involves maximizing the log-likelihood function

ℓstep1(θ1) =

J∑
j=1

log

[
M∑

m=1

P (Wj = m)

nj∏
i=1

T∑
t=1

P (Xij = t|Wj = m)

H∏
h=1

P (Yijh|Xij = t)

]
, (13)
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to obtain measurement estimates θ̃1. The second step involves estimating the

structural parameters, keeping the measurement parameters fixed at their step-1 val-

ues, by maximizing the log-likelihood function for the second step as

ℓstep2(θ2|θ1 = θ̃1) =

J∑
j=1

log

[
M∑

m=1

P (Wj = m|ZH
j )

nj∏
i=1

T∑
t=1

P (Xij = t|Wj = m,Zij)

H∏
h=1

P (Yijh|Xij = t, θ1 = θ̃1)

]
.

(14)

The two-step approach retains the attractive properties of the two-stage method,

with the additional benefits of easy-to-derive asymptotic standard errors, and even

greater computational efficiency (Di Mari et al., 2023b).

The estimation approaches that were presented in this section take the number of

classes on the higher level, M , and the lower level, T , as given. Selecting these values is

a distinct but equally fundamental task. In Section 4, two model selection approaches

are described.

3.2. Implementation in multilevLCA

Because of its attractive properties, the two-step approach is the default estimator

in the R package multilevLCA. Users can also choose to estimate LC models using

the one-step and two-stage approaches. This makes multilevLCA the first R package,

and the first freeware software in any programming language, to implement stepwise

estimation of multilevel LC models with covariates.

Estimation approaches are managed using the argument fixedpars in the func-

tion multiLCA(). One-step, two-stage, and two-step estimation of the multilevel LC

model with covariates on the higher level and the lower level are implemented by

means of the syntax

# One-step estimation:

multiLCA(data, Y, iT, id_high, iM, Z, Zh, fixedpars = 0)

# Two-stage estimation:

multiLCA(data, Y, iT, id_high, iM, Z, Zh, fixedpars = 2)
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# Two-step estimation (the default):

multiLCA(data, Y, iT, id_high, iM, Z, Zh, fixedpars = 1)

# Equivalent two-step estimation:

multiLCA(data, Y, iT, id_high, iM, Z, Zh)

The estimators are labeled by the total number of fixed parameters; in one-step

estimation, no parameters are kept fixed (fixedpars = 0); in two-stage estimation,

the fixed parameters are obtained from two consecutive sub-steps (fixedpars = 2); in

two-step estimation, the fixed parameters are obtained from a single step (fixedpars

= 1).

Regardless of which estimator is used, estimation is performed using the

expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). When

covariates are included, the M step of the EM algorithm uses a Newton-Raphson (NR)

algorithm. For computational efficiency, the EM and NR algorithms are implemented

by integration of C++ code (Eddelbuettel & François, 2011; Eddelbuettel & Sanderson,

2014).

In stepwise estimation, the starting values for the EM algorithm are particularly

important because subsequent steps are conditional on estimates from previous steps.

multilevLCA implements an initialization strategy based on Di Mari et al. (2023b).

For the measurement model, the initialization strategy involves the following

hierarchical procedure:

(1) Fit a single-level LC model with T classes to the pooled data (Y11, . . . ,YnJJ),

ignoring the multilevel structure. To initialize the class proportions P (Xi = t),

perform a k-modes clustering on the dummy-coded data, with k = T . Use the

relative sizes of the resulting clusters for the initialization. From the single-level

class solution, retain the estimates for the conditional response probabilities

P (Yijh|Xij = t), and the modal posterior class assignments3 X̃ij . The estimates

3The modal posterior class assignment is the class for which the posterior class membership probability
P (Xij = t|Yij), which describes the probability of belonging to class t given the observed response pattern

Yij , is the greatest. Using the Bayes rule (Goodman, 1974a, 1974b; Hagenaars, 1992; MacLahlan & Peel, 2000),
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for P (Yijh|Xij = t) are passed to the EM-algorithm as starting values.

For computational speed and stability, the class proportions P (Xi = t) can

be initialized by the following alternative strategy. First, perform a principal

component analysis on the dummy-coded data. Retain the first principal com-

ponents that together explain at least 85% of the total variance, or retain the

first half of all principal components, if this is a greater number. Second, perform

a k-means clustering on the reduced data, with k = T . Use the relative sizes of

the resulting clusters for the initialization.

(2) Compute the relative sizes of X̃ij within each higher-level unit j. On the resulting

J ×T table, perform a k-means clustering, with k = M . Let W̃j be the resulting

clusters. The relative sizes of W̃j are passed to the EM-algorithm as starting

values for the higher-level class proportions P (Wj = m).

In the function multiLCA(), the choice between the k-modes strategy and the

k-means on principal components strategy is managed using the logical argument

kmea. The default argument is kmea = TRUE, which indicates the k-means on principal

components strategy. The user also has the option to specify custom starting values.

This can be done by specifying, in the multiLCA() call, the argument startval (which

defaults to NULL) as the name of the data column containing starting values for the

lower-level class membership of each lower-level unit. The three initialization strategies

are implemented by means of the syntax

# k-means on principal components initialization:

multiLCA(data, Y, iT, id_high, iM, Z, Zh)

# k-modes initialization:

multiLCA(data, Y, iT, id_high, iM, Z, Zh, kmea = FALSE)

# user-specified starting values:

multiLCA(data, Y, iT, id_high, iM, Z, Zh, startval)

this quantity can be computed as

P (Xij = t|Yij) =
P (Xij = t)P (Yij |Xij = t)

P (Yij)
(15)
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For the structural model, the initialization strategy is used to handle label switch-

ing on the higher level. Keeping the conditional response probabilities fixed cannot

prevent that higher-level class labels can be switched, as there are still M ! equivalent

permutations of them. This is handled by initializing the intercept in αm and the inter-

cept in γtm at the measurement model estimates for log(ωm/ω1) and log(πt|m/π1|m),

respectively, while initializing the slope parameters in αm and the slope parameters in

γtm at zero.

4. Model selection

4.1. Theoretical framework

The general recommendation in LC analysis with covariates is to perform model selec-

tion on the model without covariates, defined in (3), and then estimate the full model

given this value (Masyn, 2017). In multilevel LC analysis, different approaches can

be used to identify the locally optimal number of higher-level classes, M , and lower-

level classes, T , among a set of specifications. Using the straightforward simultaneous

approach, all crossed combinations of the values of interest for M and T are estimated.

Using the generally recommended sequential approach (Lukočienė et al., 2010),

the optimal values for M and T are selected in a stepwise procedure. First, single-level

LC models, defined in (2), are estimated to select the optimal number of lower-level

classes, T ∗. Second, multilevel LC models are estimated, keeping the number of lower-

level classes fixed at the step-1 value T ∗, to select the optimal number of higher-level

classes, M∗. Third, multilevel LC models are estimated again, this time keeping the

number of higher-level classes fixed at the step-2 value M∗, to re-select the number of

lower-level classes.

The optimal model can be selected based on standard information criteria, such

as the Bayesian information criterion (BIC) or the Akaike information criterion (AIC).

BIC can be evaluated on the higher level and the lower level separately (e.g. Lukočienė

et al., 2010). Another information criterion is the BIC-type approximation of the

integrated complete likelihood (ICL-BIC; e.g. Morgan, 2015), which can be defined on

the higher level and the lower level separately, wherein a penalty for class separation
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is added to the BIC.

4.2. Implementation in multilevLCA

The R package multilevLCA implements semi-automatic4 model selection, for model

specifications without covariates, using the simultaneous and sequential approaches.

This is done using the same syntax as for standard model estimation, in the function

multiLCA(), with the number of classes on the higher level and the lower level specified

as a range of consecutive integers, and model selection approaches managed using

the argument sequential. The argument sequential = TRUE indicates sequential

model selection, and the argument sequential = FALSE indicates simultaneous model

selection. The sequential approach is the default model selection approach.

Consider, for example, the multilevel LC model with an unknown number of

lower-level classes, which is taken to be within the range 1-5, and an unknown number

of higher-level classes, taken to be within the range 1-3. The syntax for implementing

simultaneous and sequential model selection is

# Sequential model selection:

multiLCA(data, Y, iT = 1:5, id_high, iM = 1:3)

# Simultaneous model selection:

multiLCA(data, Y, iT = 1:5, id_high, iM = 1:3, sequential = FALSE)

Regardless of which model selection approach is implemented, the function call

returns the optimal model, and information criteria for all the estimated models. The

information criteria include higher- and lower-level BIC, AIC, and higher- and lower-

level ICL-BIC. The optimal model is selected based on BIC; with simultaneous model

selection, the lower-level BIC, and with sequential model selection, the lower-level BIC

for step 1, the higher-level BIC for step 2, and again the lower-level BIC for step 3.

This is illustrated by means of a real-data example in Section 5.

4Semi-automatic in the sense that the package implements model selection only over the range of specifications

which is specified by the user.
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4.3. Performance and estimation time of model selection

To examine the performance and estimation time for the semi-automatic implementa-

tion of the simultaneous and sequential model selection approaches in the multilevLCA

package, we conduct a simulation study. The population model has twelve binary items

Yijh. For all the lower-level classes, the probability of the most likely response is set

to 0.8. We vary the number T of lower-level classes Xij from three to five, and the

number M of higher-level classes Wj from two to three. The sample sizes on the lower

level and the higher level are 500 and 30, respectively.

In all the simulation conditions, the first lower-level class Xij = 1 has high prob-

abilities (0.8) of endorsement for all the items and the last lower-level class Xij = T

low probabilities (0.2) of endorsement for all the items.

When the number of lower-level classes is T = 3, the second class has high

probabilities for the first six items Yij1, . . . , Yij6 and low probabilities for the last

six items Yij7, . . . , Yij12. The lower-level class proportions within the first and second

higher-level classes are:

• P (Xij = 1|Wj = 1) = P (Xij = 3|Wj = 2) = 0.19

• P (Xij = 2|Wj = 1) = P (Xij = 2|Wj = 2) = 0.31

• P (Xij = 3|Wj = 1) = P (Xij = 1|Wj = 2) = 0.51

• P (Xij = t|Wj = 3) = 1/T = 0.33 for all t, when a third higher-level class is

modeled

When the number of lower-level classes is T = 4, the second and third classes

have high probabilities only for the first and last six items, respectively. The lower-level

class proportions within the first and second higher-level classes are:

• P (Xij = 1|Wj = 1) = P (Xij = 4|Wj = 2) = 0.10

• P (Xij = 2|Wj = 1) = P (Xij = 3|Wj = 2) = 0.17

• P (Xij = 3|Wj = 1) = P (Xij = 2|Wj = 2) = 0.28

• P (Xij = 4|Wj = 1) = P (Xij = 1|Wj = 2) = 0.46

• P (Xij = t|Wj = 3) = 1/T = 0.25 for all t, when a third higher-level class is

modeled
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When the number of lower-level classes is T = 5, the second, third, and fourth

classes have high probabilities only on the first, mid, and last four items, respectively.

In this context, the lower-level class proportions within the first and second higher-level

classes are:

• P (Xij = 1|Wj = 1) = P (Xij = 5|Wj = 2) = 0.06

• P (Xij = 2|Wj = 1) = P (Xij = 4|Wj = 2) = 0.10

• P (Xij = 3|Wj = 1) = P (Xij = 3|Wj = 2) = 0.16

• P (Xij = 4|Wj = 1) = P (Xij = 2|Wj = 2) = 0.26

• P (Xij = 5|Wj = 1) = P (Xij = 1|Wj = 2) = 0.43

• P (Xij = t|Wj = 3) = 1/T = 0.20 for all t, when a third higher-level class is

modeled

In all the simulation conditions, model selection is performed over a range of

values for T and M . The smallest value for these ranges is one, while we vary the

highest values by means of the excess above the true number of classes, considering

excesses equal to one or three. For example, with a lower-level excess of three for

T = 3 and a higher-level excess of one for T = 2, we perform model selection over 1-6

lower-level classes and 1-3 higher-level classes.

Table 1 summarizes the resulting 24 fully crossed simulation conditions. For each

of them, we generate 50 random samples.

The sequential model selection approach correctly identified the true number

of lower-level and higher-level classes for all the simulation conditions and random

samples. The simultaneous approach performed equally well for the lower level, while,

for the higher level, it yielded a 50/50 success rate across the random samples for 16 of

the 24 simulation conditions. For the other simulation conditions, it yielded a success

rate of 47-49/50 across the random samples5.

Figure 5 reports the average estimation time for the sequential and simultaneous

model selection approaches across the 24 simulation conditions and 50 replications.

As expected, the time cost for both approaches tends to be greater when the range

of values for the number of classes is larger on the lower level or the higher level.

5The success rate was 47/50 for simulation condition 21; 48/50 for simulation condition 5; 49/50 for simulation
conditions 1, 4, 7, 8, 16 and 22.
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It can clearly be seen that the sequential approach is consistently faster than the

simultaneous approach. The time cost for the sequential approach is less sensitive to

the range of values for T or M , so that the time cost difference increases when these

ranges increase.

5. Empirical example: citizenship norms

To illustrate the functionalities of the R package multilevLCA, we analyze data from

the International Civic and Citizenship Education Study 2016 (Schulz et al., 2018) of

the International Association for the Evaluation of Educational Achievement (IEA),

which have been used to advance political research on citizenship norms (Hooghe &

Oser, 2015; Hooghe, Oser, & Marien, 2016; Oser & Hooghe, 2013; Oser, Hooghe, Bakk,

& Di Mari, 2023). For details on data cleaning and recoding, see Oser, Di Mari, and

Bakk (2023). These data are contained in multilevLCA as the data frame dataIEA.

We can load the package and the data by executing

library(multilevLCA)

data("dataIEA")

We interpret the substantive results in relation to the LC analysis of the same data

by Oser, Hooghe, et al. (2023). Prior to their investigation, the political literature on

citizenship norms had been focusing on societal-level analyses. The LC analysis informs

the literature by taking a person-centered approach and investigating how individuals

in different sub-groups of the population adhere to distinct citizenship norms.

As part of a comprehensive evaluation of education systems, the IEA conducted

surveys in school classes of 14–year olds to investigate civic education. The use of re-

sponses from adolescents to analyze citizenship norms is justified by political research

showing that stabilization of individual political attitudes and behaviors occurs rather

early in the life cycle (Prior, 2010; Van Deth, Abendschön, & Vollmar, 2011). The

survey lists a variety of activities for respondents to rate in terms of importance in or-

der to be considered a good adult citizen. These can be categorized as self-expressive,

engaged normative ideals: promoting human rights (rights), participating in local ac-

20



tivities (local), supporting activities to protect the environment (envir), participat-

ing in peaceful protest (protest), and engaging in political conversations (discuss);

and traditional, duty-based normative ideals: obeying the law (obey), working hard

(work), voting (vote), learning about the country’s history (history), showing respect

for government representatives (respect), following political news (news), and joining

a political party (party). The answer options “very important” and “quite important”

are here coded as 1, while the answer options “not very important” and “not important

at all” are coded as 0.

Similar to Oser, Hooghe, et al. (2023), in our LC analysis, we treat the items as

observed indicators Yij of an underlying structure of citizenship norms Xij , where i

denotes a particular student, and j denotes the country in which the school is located.

The data contain 90,221 students from 22 countries.

To illustrate the observed response patterns, we print the first three rows below

(the observed responses to the questionnaire items are located in columns 5-16).

head(dataIEA[,5:16], 3)

obey rights local work envir vote history respect news protest discuss party

1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0 0

We begin the illustrative analysis with the five-class single-level LC model without

covariates, which was defined in (2), replicating the analysis of Oser, Hooghe, et al.

(2023), by executing

set.seed(2023)

multiLCA(data = dataIEA, Y = colnames(dataIEA)[5:16], iT = 5)

CLASS PROPORTIONS:

P(C1) 0.3956

P(C2) 0.3509

P(C3) 0.1111

P(C4) 0.1147
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P(C5) 0.0277

RESPONSE PROBABILITIES:

C1 C2 C3 C4 C5

P(obey|C) 0.9801 0.9742 0.6335 0.9594 0.3408

P(rights|C) 0.9802 0.9601 0.7386 0.2999 0.0485

P(local|C) 0.9678 0.9079 0.7267 0.3517 0.0527

P(work|C) 0.9364 0.8894 0.5991 0.8532 0.3150

P(envir|C) 0.9800 0.9767 0.7135 0.4771 0.1241

P(vote|C) 0.9727 0.7893 0.6644 0.7476 0.1605

P(history|C) 0.9399 0.8361 0.5992 0.7031 0.1744

P(respect|C) 0.9384 0.8569 0.5357 0.8351 0.1465

P(news|C) 0.9621 0.7171 0.5150 0.7015 0.0783

P(protest|C) 0.8713 0.5701 0.6315 0.1672 0.0516

P(discuss|C) 0.8400 0.1782 0.3945 0.1797 0.0122

P(party|C) 0.6071 0.1439 0.3071 0.1519 0.0177

---------------------------

MODEL AND CLASSIFICATION STATISTICS:

ClassErr 0.1966

EntR-sqr 0.6181

At the bottom of the partial multiLCA() output above, we can see class separa-

tion statistics for the class solution, namely, the average proportion of classification er-

ror (ClassErr; see Vermunt & Magidson, 2021), and the entropy-based R2 (EntR-sqr;

see Magidson, 1981). To interpret these statistics, consider the task of predicting class

membership based on the model parameters (using the modal assignment rule). Based

on the average proportion of classification error, we can expect 20% of the respondents

to be assigned to the wrong class. Based on the entropy-based R2, we can expect a

62% improvement of the class prediction when using the response probabilities and

class proportions, compared to the prediction using only the class proportions.
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The results show that estimated 11.1% and 11.5% of the respondents belong

to class 3 and class 4, respectively. Class 3 is corresponding to the “Engaged” class

and class 4 to the “Duty” class in Oser, Hooghe, et al. (2023). The youth belonging

to class 3 have consistently high conditional probabilities to score 1 (i.e., indicate

high importance) on the self-expressive and engaged notions of good citizenship, and

consider the traditional and duty-based items to be less important. Class 4 places high

importance on the traditional items, except for joining a political party, while placing

relatively low importance on the self-expressive items. From a theoretical perspective,

the capacity of LCA to identify these two distinctive citizenship norms allows us

to address longstanding questions in the literature regarding the socio-demographic

characteristics of people who adhere to these different norms.

We can automatically plot the estimated response probabilities by executing

plot(out)

The resulting plot is shown in Figure 6.

To investigate whether the proportion of classification error differs between the

classes, we request extensive multiLCA() output using the specification extout =

TRUE. The quantities of interest are contained in the element mClassErrProb, which

we display below, rounded to two decimal points. The rows of the matrix correspond

to true class membership, while columns correspond to predicted class membership.

As shown, the expected proportion of correct classification for class 3 (Engaged) and

class 4 (Duty) are 73% and 76%, respectively. The youth belonging to class 3 have

9% probability of being assigned to class 4, and those belonging to class 4 a 10%

probability of being assigned to class 3.

out = multiLCA(data = dataIEA, Y = colnames(dataIEA)[5:16], iT = 5, extout = TRUE)

round(out$mClassErrProb, 2)

C1_pred C2_pred C3_pred C4_pred C5_pred

C1_true 0.87 0.11 0.02 0.01 0.00

C2_true 0.13 0.76 0.07 0.04 0.00

C3_true 0.04 0.13 0.73 0.09 0.01

C4_true 0.01 0.11 0.10 0.76 0.02
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C5_true 0.00 0.00 0.04 0.06 0.90

The element mU modal, which is returned when extout = TRUE, contains the

modal class assignment of the units. As shown below, respondents scoring 0 on all the

items are estimated to belong to class 5.

head(out$mU_modal, 1)

obey rights local work envir vote history respect news protest discuss party

0 0 0 0 0 0 0 0 0 0 0 0

C1 C2 C3 C4 C5

0 0 0 0 1

Next, we extend the analysis of Oser, Hooghe, et al. (2023) by accounting for the

hierarchical structure of the data using the multilevel LC model. The higher-level unit

is the country of the respondent (the dataIEA column COUNTRY). The rationale of this

multilevel modeling is that we do not assume the distribution of citizenship norms to

be invariant across countries. We could reasonably accept that this distribution would

vary across different clusters of countries. We perform model selection on the higher

level and, to illustrate how multilevel LC analysis is typically carried out, the lower

level. For simplicity of illustration, we consider a small range of values; 1-2 classes on

the higher level and 4-5 classes on the lower level (in a more substantive LC analysis

of these data, we should reasonably consider larger ranges, such as 1-4 on the higher

level and 1-6 on the lower level). In applied LC analysis, the one-class specification is

often included in model selection to test for the presence of a clustering structure in

the data. We perform model selection using the sequential approach by executing

out = multiLCA(data = dataIEA, Y = colnames(dataIEA)[5:16], iT = 4:5,

id_high = "COUNTRY", iM = 1:2)

$step1

BIClow BIChigh AIC ICL_BIClow ICL_BIChigh

iT=4 877289.33 876869.28 876813.64 - -

iT=5 872987.19 872460.07 872390.24 - -

$step2
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BIClow BIChigh AIC ICL_BIClow ICL_BIChigh

iT*,iM=1 872987.19 872460.07 872390.24 - -

iT*,iM=2 869122.92 868554.62 868479.34 952146.46 868554.62

$step3

BIClow BIChigh AIC ICL_BIClow ICL_BIChigh

iT=4,iM* 873450.73 872997.73 872937.72 942352.88 872997.73

iT=5,iM* 869122.92 868554.62 868479.34 952146.47 868554.62

$optimal

iT= 5

iM= 2

The multiLCA() output above shows that the model with two higher-level classes

and five lower-level classes was selected as the local optimum across the considered

specifications. The value T = 5 was selected based on the lower-level BIC in the first

step, M = 2 selected based on the higher-level BIC in the second step, and T = 5

re-selected based on the lower-level BIC in the third step.

The function call for model selection returns the results for the optimal model.

This is equivalent to directly estimating the model of interest, if it were “known” to

be the locally optimal specification, that is, by executing

out = multiLCA(data = dataIEA, Y = colnames(dataIEA)[5:16], iT = 5,

id_high = "COUNTRY", iM = 2)

For brevity, we do not print the output for this model. The equivalent fixed-effect

model can be estimated by executing

out = multiLCA(data = dataIEA, Y = colnames(dataIEA)[5:16], iT = 5,

Z = "COUNTRY", fixedpars = 0)

Again, for brevity, we do not print the resulting output.

Next, we add covariates on both levels, specifying the model defined in (6). On
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the higher level, we consider as covariate the country’s gross domestic product (GDP)

per capita in constant terms with log transformation (log gdp constant). These data

are obtained from the International Monetary Fund, and included in dataIEA. On

the lower level, we consider as covariates the respondent’s gender (female; 1 if the

respondent is a girl, 0 if the respondent is a boy) and immigration status of the family

(immigrantfam; 1 if the respondent comes from a family of immigrants, 0 otherwise).

We estimate this model by executing

multiLCA(data = dataIEA, Y = colnames(dataIEA)[5:16], iT = 5,

id_high = "COUNTRY", iM = 2,

Z = c("female","immigrantfam"), Zh = "log_gdp_constant")

GROUP PROPORTIONS (SAMPLE MEAN):

P(G1) 0.5909

P(G2) 0.4091

CLASS PROPORTIONS (SAMPLE MEAN):

G1 G2

P(C1|G) 0.2904 0.5494

P(C2|G) 0.4135 0.2729

P(C3|G) 0.1193 0.0884

P(C4|G) 0.1467 0.0667

P(C5|G) 0.0300 0.0226

---------------------------

LOGISTIC MODEL FOR HIGHER-LEVEL CLASS MEMBERSHIP:

MODEL FOR G2 (BASE G1)

Alpha S.E. Z-score p-value

alpha(Intercept|G2) 9.2286 0.1748 52.7958 0.0000***

alpha(log_gdp_constant|G2) -0.9376 0.0171 -54.6772 0.0000***
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---------------------------

LOGISTIC MODEL FOR LOWER-LEVEL CLASS MEMBERSHIP:

MODEL FOR C4 (BASE C1) GIVEN G1

Gamma S.E. Z-score p-value

gamma(Intercept|C4,G1) -0.7142 0.1052 -6.7866 0.0000***

gamma(female|C4,G1) 0.0789 0.0377 2.0914 0.0365**

gamma(immigrantfam|C4,G1) -0.2994 0.0697 -4.2963 0.0000***

MODEL FOR C4 (BASE C1) GIVEN G2

Gamma S.E. Z-score p-value

gamma(Intercept|C4,G2) -2.0883 0.1337 -15.6217 0.0000***

gamma(female|C4,G2) -0.0653 0.0499 -1.3093 0.1904

gamma(immigrantfam|C4,G2) 0.4719 0.0867 5.4434 0.0000***

*** p < 0.01, ** p < 0.05, * p < 0.1

As shown in the partial multiLCA() output above, the results suggest that 59%

of the countries belong to higher-level class 1, while 41% belong to higher-level class

2. The countries belonging to higher-level class 1 emphasize the citizenship norms

of lower-level class 2, while the countries belonging to higher-level class 1 empha-

size the citizenship norms of lower-level class 1. As such, we can label higher-level

class 1 “Mainstream-emphasizing countries”, and higher-level class 2 “Maximalist-

emphasizing countries”. The prevalence of the citizenship norms of lower-level class

4 (Duty) within higher-level class 1 (Mainstream-emphasizing countries) is about

twice as high compared to the prevalence within higher-level class 2 (Maximalist-

emphasizing countries).

Below the class separation statistics and information criteria, we can see the
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estimated logistic regression model for higher-level class membership. The nega-

tive and highly statistically significant estimate for the effect of GDP per capita -

alpha(log gdp constant|G2) - suggests that wealthier countries have smaller prob-

abilities of belonging to higher-level class 2 relative to higher-level class 1 than less

wealthy countries.

Furthermore, we can see the logistic regression parameter estimates for lower-

level class membership, conditional on higher-level class membership. For brevity, we

comment only on the logistic regression coefficient for gender in the model for mem-

bership lower-level class 4 (Duty) relative to lower-level class 1, given higher-level class

1. This coefficient is labeled gamma(female|C4,G1) in the above output. The positive

sign and statistical significance (at the 5%-level) suggest that, in the countries be-

longing to higher-level class 1, girls have larger probabilities than boys of belonging

to lower-level class 4 relative to lower-level class 1, when controlling for immigration

background.

To investigate the posterior class membership probabilities, we specify extout

= TRUE. We focus on the posterior higher-level class membership probabilities for the

countries, which is contained in the element mPW, rounding the values to two decimal

points (R does not display decimal points when the values are very close to 0 or 1).

In the printed partial output below, we can see that higher-level class 1 includes,

for example, the Nordic countries: Denmark (DNK), Finland (FIN), Norway (NOR) and

Sweden (SWE). Higher-level class 2 includes, for example, the Asian areas: Hong Kong

(HKG), South Korea (KOR) and Taiwan (TWN).

out = multiLCA(data = dataIEA, Y = colnames(dataIEA)[5:16], iT = 5,

id_high = "COUNTRY", iM = 2,

Z = c("female","immigrantfam"), Zh = "log_gdp_constant",

extout = TRUE)

round(out$mPW, 2)

log_gdp_constant G1 G2

DNK 10.70 1 0

FIN 10.56 1 0

HKG 10.89 0 1

KOR 10.44 0 1
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NOR 11.08 1 0

SWE 10.73 1 0

TWN 10.69 0 1

6. Concluding remarks

We presented the state of the art of multilevel latent class modeling with covariates.

The focus was on estimation approaches, model selection, and freeware-software. We

presented the theoretical modeling framework, the most advantageous estimation ap-

proaches, and recommendations for model selection, including a benchmark simulation

study of performance and estimation times for model selection. We gave a tutorial of

the user-friendly syntax of the R package multilevLCA that executes this estimation,

visualizes the results, and implements semi-automatic model selection.

The aim of the article was to disseminate the use of advanced multilevel la-

tent class modeling among applied researchers from a variety of academic disciplines.

Multilevel latent class analysis has a wide range of applications in fields such as the

educational, political, economic, health and behavioral disciplines. There is consider-

able appeal in this methodology, which allows great flexibility in the parametrization

of individual differences in a (possibly multidimensional) phenomenon of interest.
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Sim. cond. T M T -exc. M -exc.
1 3 2 1 1
2 4 2 1 1
3 5 2 1 1
4 3 3 1 1
5 4 3 1 1
6 5 3 1 1
7 3 2 3 1
8 4 2 3 1
9 5 2 3 1
10 3 3 3 1
11 4 3 3 1
12 5 3 3 1
13 3 2 1 3
14 4 2 1 3
15 5 2 1 3
16 3 3 1 3
17 4 3 1 3
18 5 3 1 3
19 3 2 3 3
20 4 2 3 3
21 5 2 3 3
22 3 3 3 3
23 4 3 3 3
24 5 3 3 3

Table 1. Fully crossed simulation conditions based on the true and excess number of lower-level classes T ,

and the true and excess number of higher-level classes M .
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Figure 1. The single-level latent class model, with categorical indicators Y and a categorical latent class
variable X.
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Figure 2. The multilevel latent class model, with categorical indicators Y , a categorical lower-level latent

class variable X, and a categorical higher-level latent class variable W .
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Figure 3. The multilevel latent class model with covariates.
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Figure 4. The measurement model (red) and structural models (blue).
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Figure 5. Estimation time for the sequential model selection approach and the simultaneous model selection
approach, averaged across the 24 simulation conditions and the 50 replications.

39



R
e
s
p

o
n

s
e
 p

ro
b

a
b
ili

ty

o
b
e
y

ri
g
h

ts

lo
c
a

l

w
o
rk

e
n
v
ir

vo
te

h
is

to
ry

re
s
p

e
c
t

n
e
w

s

p
ro

te
s
t

d
is

c
u
s
s

p
a

rt
y

0.0

0.2

0.4

0.6

0.8

1.0
Class 1

Class 2

Class 3

Class 4

Class 5

Figure 6. Plot generated using the function multiLCA().
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